Collision Avoidance

AE 353
Spring 2023
Bret 1

Collision Avoidance By Gradient descent

Define a function $h(p)$ that is
(1) small near the goal
(2) large near obstacles
and choose the desired position by gradient descent:

$$
P_{\text {des }}=\hat{p}-k_{\text {des }} \nabla h(\hat{p})
$$

$$
\begin{aligned}
& h(p)=h_{\text {aft }}(p)+h_{\text {rep }}(p) \\
& \Downarrow \\
& \nabla h(p)=\nabla h_{\text {att }}(p)+\nabla h_{\text {rep }}(p)
\end{aligned}
$$

ATTRACTIVE PART ("small near the goal")

Repulsive Part ("large near obstacles")

$$
h_{V}(p)=k_{\text {rep }} \sum_{i}(\underbrace{\frac{1}{d_{i}(p)}}_{\text {distance }})
$$ distance to closest point on obstacle i

$$
\nabla h_{\text {rep }}(p)=-k_{\text {rep }} \sum_{i}\left(\frac{1}{d_{i}(p)^{2}}\right) \nabla d_{i}(p)
$$

radius of sphere

$$
d_{i}(p)=\|p-\underbrace{\text { Pobst }} i\|-\overbrace{r_{\text {drove }}} \text { around drove }
$$

$$
\text { closest point on obstacle } i
$$

\forall

$$
\nabla d_{i}(p)=\left(\frac{p-\text { Pobst }}{\|_{p}-\text { Pobst } i}\right)
$$

SPHERICAL OBSTACLE

$$
\text { Pobst }=q+s\left(\frac{p-q}{\|p-q\|}\right)
$$

planar obstacle

$$
\text { Pobst }=p-(n \cdot(p-q)) n
$$

planar obstacle with circular hole

