LQR (details)

AE 353
Spring 2023
Bretl

Linear Quadratic Regulator (LQR) total cost

subject to

$$
\int_{t_{0}}^{\infty}\left(x(t)^{\top} Q_{x} x(t)+u(t)^{\top} R_{\lambda} u(t)\right) d t
$$

$$
\left.\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
x\left(t_{0}\right)=x_{0}
\end{array}\right\} \text { constraints }
$$

decision variables
The minimizer (ie., the input that achieves minimum cost) is

$$
u(t)=-K x(t)
$$

and the minimum (ie., the minimum cost) is

$$
x_{0}^{\top} P x_{0}
$$

where K and P can be found in python as follows:

```
def lqr(A, B, Q, R):
    P = linalg.solve_continuous_are(A, B, Q, R)
    K = linalg.inv(R) @ в.т@ ©
    return K, P
```

$$
\begin{array}{ll}
\underset{u\left[t_{0}, \infty\right)}{\operatorname{minimize}}, x_{\left[t_{0}, \infty\right)} & \int_{t_{0}}^{\infty}\left(\underline{\left.x(t)^{\top} Q x(t)+u(t)^{\top} R u(t)\right) d t}\right. \\
\text { subject to } & \begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
\\
\\
x\left(t_{0}\right)=x_{0}
\end{array}
\end{array}
$$

Why is the cost "quadratic" and what does it really mean?

$$
\begin{aligned}
x=\left[x_{1}\right] \quad Q & =\left[q_{0}\right] \quad u=\left[u_{1}\right] \quad R=\left[r_{1}\right] \\
x^{\top} Q x+u^{\top} R u & =\left[x_{1}\right]\left[q_{1}\right]\left[x_{1}\right]+\left[u_{1}\right]\left[r_{1}\right]\left[u_{1}\right] \\
& =\left[q_{1} x_{1}^{2}\right]+\left[r_{1} u_{1}^{2}\right] \\
& =\left[q_{1} x_{1}^{2}+r_{1} u_{1}^{2}\right]
\end{aligned}
$$

Why is the cost "quadratic" and what does it really mean?

$$
\begin{aligned}
& x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad u=\left[u_{1}\right] \\
& \hat{u} Q=\left[\begin{array}{ll}
q_{1} & q_{3} \\
q_{3} & q_{2}
\end{array}\right] \quad R=\left[r_{1}\right]
\end{aligned}
$$

$$
\begin{aligned}
x^{\top} Q x+u^{\top} R u & =\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
q_{1} & q_{3} \\
q_{3} & q_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[u_{1}\right]\left[r_{1}\right]\left[u_{1}\right] \\
& =\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{l}
q_{1} x_{1}+q_{3} x_{2} \\
q_{3} x_{1}+q_{2} x_{2}
\end{array}\right]+\left[\begin{array}{l}
r_{1} u_{1}^{2}
\end{array}\right] \\
& =\left[q_{1} x_{1}^{2}+q_{3} x_{1} x_{2}+q_{3} x_{1} x_{2}+q_{2} x_{2}^{2}+r_{1} u_{1}^{2}\right] \\
& \left.=\left[q_{1} x_{1}^{2}\right]+2 q_{3} x_{1} x_{2}+q_{2} x_{2}^{2}+r_{1} u_{1}^{2}\right]
\end{aligned}
$$

What Q and R would produce a given cost?

$$
\begin{aligned}
& x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad u=\left[u_{1}\right] \\
& \left.\hat{L} Q=\left[\begin{array}{ll}
q_{1} & q_{3} \\
q_{3} & q_{2}
\end{array}\right] \quad\left[\begin{array}{r}
\left.r_{1}\right] \\
q_{1} x_{1}^{2}
\end{array}\right]+2 q_{3} x_{1} x_{2}+q_{2} x_{2}^{2}+r_{1} u_{1}^{2}\right] \\
& x^{\top} Q x+u^{\top} R u=\left[5 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}+1 u_{1}^{2}\right]
\end{aligned}
$$

$$
Q=\left[\begin{array}{cc}
5 & -1 \\
-1 & 2
\end{array}\right] \quad R=\left[\begin{array}{l}
1
\end{array}\right]
$$

Q and R are commonly chosen to be diagonal

$$
\begin{gathered}
Q=\operatorname{diag}\left(q_{1}, \ldots, q_{n_{x}}\right)^{a} \\
R=\operatorname{diag}\left(r_{1}, \ldots, r_{n_{u}}\right) \\
\uparrow \\
\text { all positive }
\end{gathered}
$$

Rule of thumb

$$
q_{i}=\left(\frac{1}{x_{i, \max }}\right)^{2} \quad r_{i}=\left(\frac{1}{u_{i, \max }}\right)^{2}
$$

