LQR (problem statement)

AE 353
Spring 2023
Bret1

Linear Quadratic Regulator (LQR) total cost

subject to

$$
\int_{t_{0}}^{\infty}\left(x(t)^{\top} Q_{x} x(t)+u(t)^{\top} R_{\lambda} u(t)\right) d t
$$

$$
\left.\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
x\left(t_{0}\right)=x_{0}
\end{array}\right\} \text { constraints }
$$

decision variables
The minimizer (ie., the input that achieves minimum cost) is

$$
u(t)=-K x(t)
$$

and the minimum (ie., the minimum cost) is

$$
x_{0}^{\top} P x_{0}
$$

where K and P can be found in python as follows:

```
def lqr(A, B, Q, R):
    P = linalg.solve_continuous_are(A, B, Q, R)
    K = linalg.inv(R) @ в.т@ ©
    return K, P
```

