LQR (error vs affort)

AE 353
Spring 2023
Bret1

$$
\begin{aligned}
\dot{x}= & A x+B u \\
u= & -K x \\
& \uparrow \\
& \text { HOW TO FIND } k ?
\end{aligned}
$$

(1) Gain tuning (i.e., guess and check)

- make a small change to K
- check if all eigenvalues of $A-B K$ have negative real part
- repeat until satisfied
(2) Eigenvalue placement
- choose desired eigenvalue locations
- apply "plac e-poles" or Ackermann's method
(3) LQR (minimize a cost)
- choose weights on the cost of non-zero x and u
- choose K to minimize total, integrated cost

$$
\begin{aligned}
\dot{x} & =[5] x+[1] u \\
u= & -[k] x \\
\dot{x}= & {[5-k] x } \\
& x(t)=e^{(5-k) t} x(0)
\end{aligned}
$$

Linear Quadratic Regulator (LQR)

$$
\begin{array}{|ll}
\underset{u_{\left[t_{0}, \infty\right)}}{\operatorname{minimize}} & \int_{t_{0}}^{\infty}\left(x(t)^{\top} Q x(t)+u(t)^{\top} R u(t)\right) d t \\
\text { subject to } & \dot{x}(t)=A x(t)+B u(t) \\
& x\left(t_{0}\right)=x_{0}
\end{array}
$$

The minimizer (i.e., the input that achieves minimum cost) is

$$
u(t)=-K x(t)
$$

and the minimum (ie., the minimum cost) is

$$
x_{0}^{\top} P x_{0}
$$

where K and P can be found in python as follows:

```
def lqr(A, B, Q, R):
    P = linalg.solve_continuous_are(A, B, Q, R)
    K = linalg.inv(R) @ в.т @ P
    return K, P
```

