Ackermann's mechod

AE 353
Spring 2023
Bret1

$$
A=\left[\begin{array}{ccc}
2 & 0 & -5 \\
-1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right] \quad B=\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right] \quad K=\left[\begin{array}{lll}
k_{1} & k_{2} & k_{3}
\end{array}\right]
$$

The characteristic equation we have is

$$
\begin{aligned}
& \operatorname{det}(s I-(1-B K))= \\
& s^{3}+\left(-2 k_{2}+k_{3}-7\right) s^{2}+\left(-5 k_{1}+11 k_{2}-6 k_{3}+15\right) s+\left(20 k_{1}-9 k_{2}+8 k_{3}-15\right) .
\end{aligned}
$$

Suppose the characteristic equation we want is

$$
s^{3}+r_{1} s^{2}+r_{2} s+r_{3}
$$

Then we have to solve.

$$
\begin{aligned}
-2 k_{2}+k_{3}-7 & =r_{1} \\
-5 k_{1}+11 k_{2}-6 k_{3}+15 & =r_{2} \\
20 k_{1}-9 k_{2}+8 k_{3}-15 & =r_{3}
\end{aligned}
$$

$$
A=\left[\begin{array}{ccc}
-a_{1} & -a_{2} & -a_{3} \\
-3 & -2 & -5 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad B=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad K=\left[\begin{array}{lll}
k_{1} & k_{2} & k_{3}
\end{array}\right]
$$

The characteristic equation we have is

$$
\operatorname{det}(s I-(1-B K))=s^{3}+\left(k_{1}+3\right) s^{2}+\left(k_{2}+2\right) s+\left(k_{3}+5\right)
$$

Suppose the characteristic equation we want is

$$
s^{3}+r_{1} s^{2}+r_{2} s+r_{3}
$$

Then we have to solve

$$
\left.\begin{array}{ll}
k_{1}+3=r_{1} & k_{1}=r_{1}-3 \\
k_{2}+2=r_{2} & k_{2}=r_{2}-2 \\
k_{3}+5=r_{3} & k_{3}=r_{3}-5
\end{array}\right\} \begin{aligned}
& k_{1}=r_{1}-a_{1} \\
& k_{2}=r_{2}-a_{2} \\
& k_{3}=r_{3}-a_{3}
\end{aligned}
$$

Controllable Canonical Form (CCF)

$$
\left.A=\left[\begin{array}{lll}
{\left[\begin{array}{ll}
-a_{1} & \cdots
\end{array}\right.} & \left.-a_{n}\right] \\
{\left[\begin{array}{l}
I_{(n-1) \times(n-1)}
\end{array}\right]} & O_{(n \times 1) \times 1}
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \quad\left[\begin{array}{l}
1 \\
O_{(n-1) \times 1}
\end{array}\right]\right]
$$

Facts

$$
\begin{aligned}
& \operatorname{det}(s I-A)=s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n} \\
& A-B K=\left[\begin{array}{llll}
{\left[-a_{1}-k_{1}\right.} & & \cdots & -a_{n-k} \\
{\left[\begin{array}{lll}
{[} & &
\end{array}\right]}
\end{array}\right]
\end{aligned}
$$

$$
\operatorname{det}(s I-(A-B K))=s^{n}+\left(a_{1}+k_{1}\right) s^{n-1}+\cdots+\left(a_{n-1}+k_{n-1}\right) s+\left(a_{n}+k_{n}\right)
$$

Consequence
if you want

$$
s^{n}+r_{1} s^{n-1}+\cdots+r_{n-1} s+r_{n}
$$ computation!

then

$$
k_{1}=r_{1}-a_{1} \quad \cdots \quad k_{n}=r_{n}-a_{n}
$$

If we could put a system in CCF...

$$
\begin{array}{ll}
\dot{x}=A x+B u \quad V^{\prime}=V^{-1} x & V_{z}=A V_{z}+B u \\
\quad x=V_{z} & \dot{z}=\underbrace{V^{-1} A V_{z}+V^{-1} B u}
\end{array}
$$

Then ...

$$
\begin{aligned}
u & =-\overbrace{K_{C C F} z=}^{\text {easy to find }}=-K_{C C F} V^{-1} x \\
& =-\underbrace{\left(K_{C C F} V^{-1}\right)}_{K} x
\end{aligned}
$$

How to find AccF

$$
\begin{align*}
& \underbrace{\operatorname{det}\left(s I-A_{\text {cet }}\right)}=\underbrace{s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n}^{2}} \\
& \operatorname{det}\left(s I-V^{-1} A V\right)=\operatorname{det}(s I \tag{A}
\end{align*}
$$

How to find V given AccF and BCeF

$$
\begin{aligned}
& \text { solve for } V^{-1} \text { (that's what we veed to find } K \\
& A_{C C F}=V^{-1} A V \quad B_{C C F}=V^{-1} B \\
& B_{C C F}=V^{-1} B \\
& A_{C E F} B_{C C F}=V^{-1} A Y V^{1} B=V^{-1} A B \\
& A_{C L F}^{2} B_{C C F}=V^{1} A V Y A Y B=V^{-1} A^{2} B \\
& A_{\text {CCF }}^{n-1} B_{\text {CCF }}= \\
& \underbrace{\left[\begin{array}{llll}
B_{C C F} & A_{C C F} B_{c C F} & \cdots & A_{C C F}^{n-1} B_{C C F}
\end{array}\right]}_{W_{C C F}}=V^{-1} \underbrace{\left[\begin{array}{lll}
B & A B & \cdots
\end{array} A^{n-1} B\right.}] \\
& V^{-1}=\omega_{\text {ULF }} W^{-1}
\end{aligned}
$$

\hat{L} works as loug as W is invertible

- Compute the characteristic equation that we want:

$$
\left(s-p_{1}\right) \cdots\left(s-p_{n}\right)=s^{n}+r_{1} s^{n-1}+\cdots+r_{n-1} s+r_{n}
$$

- Compute the characteristic equation that we have:

$$
\operatorname{det}(s I-A)=s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}
$$

- Compute the controllability matrix of the original system (and check that $\operatorname{det}(W) \neq 0$):

$$
W=\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right]
$$

- Compute the controllability matrix of the transformed system:

$$
W_{\mathrm{ccf}}=\left[\begin{array}{llll}
B_{\mathrm{ccf}} & A_{\mathrm{ccf}} B_{\mathrm{ccf}} & \cdots & A_{\mathrm{ccf}}^{n-1} B_{\mathrm{ccf}}
\end{array}\right]
$$

where

$$
A_{\mathrm{ccf}}=\left[\begin{array}{ccccc}
-a_{1} & -a_{2} & \cdots & -a_{n-1} & -a_{n} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right] \quad B_{\mathrm{ccf}}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

- Compute the gains for the transformed system:

$$
K_{\mathrm{ccf}}=\left[\begin{array}{lll}
r_{1}-a_{1} & \cdots & r_{n}-a_{n}
\end{array}\right]
$$

- Compute the gains for the original system:

$$
K=K_{\mathrm{ccf}} W_{\mathrm{ccf}} W^{-1}
$$

The system

$$
\dot{x}=A x+B u
$$

is controllable if

$$
W=\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right]
$$

has full rank.

