Diagonalization (Part Z)

$$
A E 353
$$

Spring 2023
Bretl

LASt time
$\dot{x}=A x+B u \leftarrow$ model of all dynamics we care about
$u=-K x \quad \leftarrow$ model of all controllers we care about
$\dot{x}=(A-B K) x \leftarrow$ closed-loop system
\downarrow
$x(t)=e^{(A-B K) t} x(0) \leftarrow$ solution (by matrix exponential)
$x(t) \rightarrow 0$ as $\left.t \rightarrow \infty \quad \begin{array}{l}\text { if and only if all eigenvalues of } \\ \\ A-B K \text { have negative real part }\end{array}\right\}$ asymptotic stability

OUR GOAL IS TO PROVE THIS
$\dot{x}=F x \quad \leftarrow$ for which F does $x(t) \rightarrow 0$ as $+\rightarrow \infty$???

STRATEGY
(1) Answer this question in the special case when F is diagonal
(2) Show how to rewrite (almost) any F as diagonal
(3) Answer this question for (almost) any F
suppose F is diagonal

$$
F=\left[\begin{array}{cc}
s_{1} & 0 \\
0 & s_{2}
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
s_{1} t & 0 \\
0 & s_{2} t
\end{array}\right]\left[\begin{array}{cc}
s_{1} t & 0 \\
0 & s_{2} t
\end{array}\right]
$$

then: if $\dot{x}=F x$ then $x(t)=e^{F t} x(0)$

$$
\begin{aligned}
& e^{F t}=I_{2}+F t+\frac{1}{2}(F t)^{2}+\cdots \\
&=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
s_{1} t & 0 \\
0 & s_{2} t
\end{array}\right]+\left[\begin{array}{cc}
\frac{1}{2}\left(s_{1} t\right)^{2} & 0 \\
0 & \frac{1}{2}\left(s_{2}+t^{2}\right.
\end{array}\right]+\cdots \\
&=\left[\begin{array}{cc}
1+\left(s_{1} t\right)+\frac{1}{2}\left(s_{1} t\right)^{2}+\ldots & 0 \\
0 & 1+s_{2} t+\frac{1}{2}\left(s_{2} t\right)^{2}+\ldots
\end{array}\right] \\
&=\left[\begin{array}{cc}
e^{s_{1} t} & 0 \\
0 & e^{s_{2} t}
\end{array}\right] \quad \leftarrow \text { when } F \text { is diagonal, } \\
& e^{F t} \text { is easy to find }
\end{aligned}
$$

\because
coordinate invariance

$$
\begin{aligned}
& \begin{array}{c}
\dot{x}=F x \\
\downarrow
\end{array} \begin{array}{c}
\\
0
\end{array} \quad \text { plug in } x=V z \text { for some invertible } V \\
& V_{\dot{z}}=F V_{z} \\
& \downarrow \text { solve for } \dot{z} \\
& \dot{z}=\left(V^{-1} F V\right)_{z} \\
& \text { old coordinates new coordivites } \\
& \left.\left.\left[\begin{array}{c}
q \\
q \\
v \\
\uparrow
\end{array}\right]=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{c}
q \\
q+v \\
q-v
\end{array}\right]\right\} \begin{array}{c}
i \\
x=
\end{array}\right\} \begin{array}{c}
\text { EXAMPLE } \\
\text { OF } \\
\text { CODRDNATE } \\
\text { TRANSOPAHTON }
\end{array} \\
& \downarrow \text { Solve for } z(t) \text { with matrix exponential } \\
& z(t)=e^{\left(V^{-1} F V\right) t} z(0) \\
& z(t)=V^{-1} x(T) \\
& \downarrow \text { plug in } z=V^{-1} X \text { and solve for } x \\
& V^{-1} x(t)=e^{\left(V^{-1} F V\right) t} V^{-1} x(0) \\
& \left.\begin{array}{l}
x(t)=V e^{\left(V^{-1} F V\right)+} V^{-1} x(0) \\
x(t)=F t
\end{array}\right\} \begin{array}{l}
\text { THESE MUST BE EQUAL! } \\
V e^{\left(V^{-1} F V\right)+V^{-1} x(0)}=e^{F+} x(0)
\end{array} \\
& \text { for } a=\pi / \text { invertible } V
\end{aligned}
$$

$\dot{x}=F x \leftarrow$ for which F does $\underbrace{x(t) \rightarrow 0}$ as $t \rightarrow \infty$ for any $x(0)$?

$$
x(t)=e^{F t} x(0) e^{F t} \rightarrow 0 \text { as } t \rightarrow \infty
$$

(1) Answer this question in the special case when F is diagonal
matrix exp scalar exp

$$
\begin{aligned}
& F=\left[\begin{array}{ll}
s_{1} & 0 \\
0 & s_{2}
\end{array}\right] \Rightarrow e^{F_{t}}=\left[\begin{array}{cc}
e^{s_{1} t} & 0 \\
0 & e^{s_{2} t}
\end{array}\right] \\
& s_{1}=a+j b \\
& e^{s_{1} t}=e^{(a+j b) t}=e^{a t} e^{j b t}=e^{a t}(\cos (b t)+j \sin (b t))
\end{aligned}
$$

(2) Show how to rewrite (almost) any F as diagonal

$$
x(t)=e^{F t} x(0)
$$

$$
x=V z
$$

$x(t)=V e^{(V}$
$\frac{e^{F t}}{J}=\frac{e^{\left(V^{-1} F V\right) t}}{\sqrt{ }} V^{-1} \quad$ for cory invertible V
choose V so $V^{-1} F V$ is diagonal
choose V so $V^{-1} F V$ is diagonal

$$
\begin{aligned}
V^{-1} F V= & {\left[\begin{array}{ll}
s_{1} & 0 \\
0 & s_{2}
\end{array}\right] }
\end{aligned} \quad \begin{aligned}
& F V
\end{aligned}=V\left[\begin{array}{ll}
s_{1} & 0 \\
0 & s_{2}
\end{array}\right]
$$

v_{1} and v_{2} are EIGENVECTURS of F S_{1} and S_{2} care EIGEUVALUES of F
$\dot{x}=F x \leftarrow$ for which F does $x(t) \rightarrow 0$ as $t \rightarrow \infty$ for any $x(0)$?
(3) Answer this question for (almost) any F

We have shown:

$$
x(t)=e^{F t} x(0)=V e^{\left(V^{-1} F V\right) t V^{-1} x(0)}
$$

This means that

$$
e^{F t} \rightarrow 0 \text { if and only if } e^{\left(V^{-1} F V\right) t} \rightarrow 0
$$

for some invertible V. If we choose V as a matrix with the eigenvectors of F as its columns (and if all eigenvalues of F are distinct) then

$$
e^{\left(V^{-} F V\right) t}=e^{\left[\begin{array}{ll}
s_{1} & 0 \\
0 & s_{2}
\end{array}\right] t}=\left[\begin{array}{cc}
e^{s_{1} t} & 0 \\
0 & e^{s_{2} t}
\end{array}\right]
$$

where s_{1} and s_{2} are the eigenvalues of F (for our 2×2 example).

The system

$$
\dot{x}=F x
$$

$$
\begin{aligned}
& x(t) \rightarrow 0 \text { as } t \rightarrow \infty \\
& \text { for any } x(0)
\end{aligned}
$$

is asymptotically stable if and only if all eigenvalues of F have negative real part.

