Linearizabion

$$
1 / 30 / 2023
$$

$$
A E 353
$$

Spring 2023
Bret1
$\dot{x}=A x+B u \leftarrow$ state space
$\begin{array}{cc}\uparrow & \uparrow \\ \text { state input }\end{array}$ model

$$
\left.\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
-1 & -10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
1 \\
1 / 2
\end{array}\right]\left[u_{1}\right]\right)
$$

$$
\left(J+u r^{2}\right) \ddot{q}=\tau-m g r \sin q \quad \leftarrow c_{1} \ddot{q}=\tau-c_{2} \sin q
$$

STEP 1 -rewrite as a set of first-order ODEs
$\ddot{q} \quad \leftarrow$ find time derivative of q of highest order

$$
v=\dot{q}
$$

\longleftarrow define new variables for each time derivative of of with lower order
$c_{1} \dot{V}=\tau-c_{2} \sin q_{p} \leftarrow$ rewrite ODE in terms of new variables

$$
\dot{q}=v
$$

\angle add an ODE for each lower-order derivative of q
$\dot{q}=V \quad \leftarrow$ collect ODEs together, solving for
in $\dot{v}=\left(\tau-c_{2} \sin q\right) / c_{1}$ time derivatives if necessary

$$
\left[\begin{array}{l}
d \\
\dot{q} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{cc}
v \\
\left(\tau-c_{2} \sin q\right) / c_{1}
\end{array}\right] \quad m=\left[\begin{array}{l}
q \\
v
\end{array}\right] \quad=[\tau]
$$

The picture I have in my head when thinking about linearization. means "tangent live"
which tangent live depends on which point you linearize about

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{q} \\
\dot{v}
\end{array}\right]=\sqrt{\left[\begin{array}{c}
v \\
\left(T-c_{2} \sin q\right) / c_{1}
\end{array}\right]}} \\
& \text { STEP } 2 \text { - find an equilibrium point }
\end{aligned}
$$

$\left[\begin{array}{l}0 \\ 0\end{array}\right]=\left[\begin{array}{c}v_{e} \\ \left(\tau_{e}-c_{2} \sin q_{e}\right) / c_{1}\end{array}\right] \quad \sigma$ set time derivatives to zero

$$
\begin{aligned}
& \begin{array}{ll}
v_{e}=0 & \\
\tau_{e}=c_{2} \sin q_{e} & \{\text { solve }
\end{array} \\
& q_{e}=\pi \quad \tau_{e}=0 \quad \leftarrow \text { pick a solution } \\
& v_{e}=0 \\
& {\left[\begin{array}{l}
q_{e} \\
v_{e}
\end{array}\right]=\left[\begin{array}{c}
\pi \\
0 \\
\hat{h} m_{e}
\end{array} \quad\left[\tau_{e}\right]=\left[\begin{array}{l}
0 \\
\uparrow
\end{array} \begin{array}{l}
\text { write in standard form } \\
n_{e}
\end{array}\right.\right.}
\end{aligned}
$$

STEP 3 - define state and input

$$
\begin{array}{ll}
x=\left[\begin{array}{l}
q-\pi \\
v
\end{array}\right] & \leftarrow x=m-m_{e} \\
u=[\tau] & \leftarrow u=n-n_{e}
\end{array}
$$

$$
\left[\begin{array}{l}
\dot{q} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{c}
v \\
\left(\tau-c_{2} \sin q\right) / c_{1}
\end{array}\right] \quad\left[\begin{array}{l}
q_{e} \\
v_{e}
\end{array}\right]=\left[\begin{array}{l}
\pi \\
0
\end{array}\right] \quad\left[r_{e}\right]=[0]
$$

STEP 4-compute A and B

$$
\begin{aligned}
& \dot{m}=f(m, n) 0 \\
& \hat{\lceil } \approx f\left(m e, n_{e}\right)+\underbrace{\left.\frac{\partial f}{\partial m}\right|_{m_{e}, n_{e}}}_{A} \underbrace{\left(m-m_{e}\right)}_{x}+\underbrace{\left.\frac{\partial f}{\partial \mid}\right|_{m_{e}, n_{e}}}_{B} \underbrace{\left(n-n_{e}\right)}_{u} \\
& \dot{x}= \\
A= & {\left[\begin{array}{cc}
0 & 1 \\
-\left(c_{2} \cos q_{e}\right) / c_{1} & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
c_{2} / c_{1} & 0
\end{array}\right] } \\
B= & {\left[\begin{array}{c}
0 \\
1 / c_{1}
\end{array}\right] }
\end{aligned}
$$

