Day 17
Yet more LQR

$$
\begin{aligned}
& \text { AE } 353 \\
& \text { Spring zone } \\
& \text { Bret 1 }
\end{aligned}
$$

the solution is linear state feedback

$$
u(t)=-k x(t)
$$

for a particular choice of k that can be found with two lines of python code

Linear Quadratic Regulator (LQR)

$$
\begin{array}{|ll}
\underset{u_{[(t, \infty)}}{\operatorname{minimize}} & \int_{t_{0}}^{\infty}\left(\begin{array}{l}
\lambda_{x} \\
\left.x(t)^{\top} Q x(t)+u(t)^{\top} R u(t)\right) d t \\
\text { subject to }
\end{array}\right. \\
& \dot{x}(t)=A x(t)+B u(t) \\
& x\left(t_{0}\right)=x_{0}
\end{array}
$$

The minimizer (i.e., the input that achieves minimum cost) is

$$
u(t)=-K x(t)
$$

and the minimum (ie., the minimum cost) is

$$
x_{0}^{\top} P x_{0}
$$

where K and P can be found in python as follows:

```
def lqr(A, B, Q, R):
    P = linalg.solve_continuous_are(A, B, Q, R)
    K = linalg.inv(R) @ в.т @ P
return K, P
```

Why is the cost "quadratic" and what does it really mean?

$$
\begin{aligned}
& \begin{array}{l}
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad u=\left[u_{1}\right] \\
Q=\left[\begin{array}{ll}
q_{1} & q_{3} \\
q_{3} & q_{2}
\end{array}\right] \\
x^{\top} Q x+u^{\top} R u=\left[\begin{array}{ll}
x_{1} & \left.x_{2}\right]\left[\begin{array}{ll}
q_{1} & q_{3} \\
q_{3} & q_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[u_{1}\right]\left[r_{1}\right]\left[u_{1}\right]
\end{array}\right. \\
=\left[\begin{array}{ll}
x_{1} & \left.x_{2}\right]\left[\begin{array}{l}
q_{1} x_{1}+q_{3} x_{2} \\
q_{3} x_{1}+q_{2} x_{2}
\end{array}\right]+r_{1} u_{1}^{2}
\end{array}\right. \\
5 x_{1}^{2}-2 x_{1} x_{2}+3 x_{2}^{2}+u_{1}^{2}
\end{array}=\begin{array}{l}
q_{1} x_{1}^{2}+q_{3} x_{1} x_{2}+q_{3} x_{1} x_{2}+q_{2} x_{2}^{2}+r_{1} u_{1}^{2} \\
=
\end{array} q_{1} x_{1}^{2}+2 q_{3} x_{1} x_{2}+q_{2} x_{2}^{2}+r_{1} u_{1}^{2}
\end{aligned}
$$

What Q and R would produce a given cost?

$$
\begin{aligned}
& x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad u=\left[u_{1}\right] \\
& \hat{L} Q=\left[\begin{array}{ll}
q_{1} & q_{3} \\
q_{3} & q_{2}
\end{array}\right] \quad R=\left[r_{1}\right] \\
& x^{\top} Q x+u^{\top} R u=\quad 5 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}+1 u_{1}^{2}
\end{aligned}
$$

$$
Q=\left[\begin{array}{ll}
&]
\end{array}\right]
$$

Q and R are commonly chosen to be diagonal

$$
\begin{gathered}
Q=\operatorname{diag}\left(q_{1}, \ldots, q_{n_{x}}\right)^{a} \\
R=\operatorname{diag}\left(r_{1}, \ldots, r_{n_{u}}\right) \\
\uparrow \\
\text { all positive }
\end{gathered}
$$

