Day 12
Eigenvalue placement

AE 353
Spring zozz
Bret l

The eigenvalues of a matrix are the roots of its characteristic polynomial

$$
\begin{aligned}
& \left.\begin{array}{l}
\dot{x}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
u=-\left[\begin{array}{ll}
20 & 9
\end{array}\right] x
\end{array}\right\} \\
& A-B K=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]-\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{ll}
20 & 9
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & 1 \\
-20 & -9
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}(s I-(A-B K)) \\
& =\operatorname{det}\left(\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]-\left[\begin{array}{cc}
0 & 1 \\
-20 & -9
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{cc}
s & -1 \\
20 & s+9
\end{array}\right]\right) \\
& =s^{2}+9 s+20=(s+4)(s+5) \longleftarrow s_{1}=-4 \quad s_{2}=-5
\end{aligned}
$$

One way to place eigenvalues is to equate coefficients of the characteristic polynomial

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
& u=-\left[\begin{array}{ll}
k_{1} & k_{2}
\end{array}\right] x
\end{aligned}
$$

$$
K=\left[\begin{array}{ll}
6 & 5
\end{array}\right]
$$

\leftarrow find k_{1} and k_{2} to put closed-loop eigenvalues at -2 and -3

What do we want?

$$
(s-(-2))(s-(-3))=(s+2)(s+3)=s^{2}+5 s+6
$$

What do we have?

$$
\begin{aligned}
& \text { What do we have? } \\
& \left.\left.\qquad A-B K=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]-\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{ll}
k_{2} & k_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & k_{2}=5 \\
-k_{1} & -k_{2}
\end{array}\right]\right)\right] k_{1}=6 \\
& \left.\begin{array}{rl}
\operatorname{det}(s I-(A-B K))=\operatorname{det}\left(\left[\begin{array}{cc}
s & 0 \\
0 & s
\end{array}\right]-\left[\begin{array}{cc}
0 & 1 \\
-k_{1} & -k_{2}
\end{array}\right]\right.
\end{array}\right] \\
& =\operatorname{det}\left(\left[\begin{array}{ll}
s & -1 \\
k_{1} & s+k_{2}
\end{array}\right]\right)=s^{2}+k_{2} s+k_{1}
\end{aligned} .
$$

$$
(s-(-5+3 j))(s-(-5-3 j))
$$

It is possible to automate the process of eigenvalue placement

See python demo

