Day 8

AE 353
Spring 2022
Bret1
LAST TIME

\[x = Ax + Bu \] ← model of all dynamics we care about
\[u = -Kx \] ← model of all controllers we care about

\[\dot{x} = (A - BK)x \] ← closed-loop system

\[x(t) = e^{(A-BK)t} x(0) \] ← solution (by matrix exponential)

\[x(t) \to 0 \text{ as } t \to \infty \] if and only if all eigenvalues of \(A - BK \) have negative real part

\} \text{ asymptotic stability}
ACTIVITY - PRACTICE DERIVATION
\[\dot{x} = Fx \]

for which \(F \) does \(x(t) \rightarrow 0 \) as \(t \rightarrow \infty \)???

\[F = (A - BK) \]

STRATEGY

1. Answer this question in the special case when \(F \) is diagonal

2. Show how to rewrite (almost) any \(F \) as diagonal

3. Answer this question for (almost) any \(F \)
Suppose F is diagonal.

$$F = \begin{bmatrix} s_1 & 0 \\ 0 & s_2 \end{bmatrix}$$

Then:

$$e^{Ft} = I + Ft + \frac{1}{2}(Ft)^2 + \ldots$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} s_1t & 0 \\ 0 & s_2t \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 2s_1^2t^2 & 0 \\ 0 & 2s_2^2t^2 \end{bmatrix} + \ldots$$

$$= \begin{bmatrix} 1+s_1t + \frac{1}{2}(s_1t)^2 + \ldots & 0 \\ 0 & 1+s_2t + \frac{1}{2}(s_2t)^2 + \ldots \end{bmatrix}$$

$$= \begin{bmatrix} e^{s_1t} & 0 \\ 0 & e^{s_2t} \end{bmatrix}$$

When F is diagonal, e^{Ft} is easy to find.
coordinate invariance

\[
\begin{align*}
\dot{x} &= Fx \\
V\dot{z} &= FVz \\
\end{align*}
\]

plug in \(x = Vz \) for some invertible \(V \)

\[
\begin{align*}
\dot{z} &= V^{-1}FVz \\
\end{align*}
\]
solve for \(z \)

\[
\begin{align*}
z(t) &= e^{(V^{-1}FV)^t}z(0) \\
\end{align*}
\]

plug in \(z = V^{-1}x \) and solve for \(x \)

\[
\begin{align*}
V^{-1}x(t) &= e^{(V^{-1}FV)^t}V^{-1}x(0) \\
\end{align*}
\]

\[
\begin{align*}
x(t) &= \left[V e^{(V^{-1}FV)^t} V^{-1} \right] x(0) \\
\end{align*}
\]

\[
\begin{align*}
x(t) &= e^{Ft} x(0) \\
\end{align*}
\]

\[
\begin{align*}
e^{Ft} &= Ve^{(V^{-1}FV)^t} V \\
\end{align*}
\]
who cares?

\[eF^* = V e^{(V^*FV)^*} V^{-1} \]

this is easy to find if \(V^*FV \) is diagonal
so let's choose \(V \) so this is true

our goal - find invertible \(V \) such that

\[V^{-1}FV = \text{diag} (s_1, \ldots, s_n) \]

← this is the same as

\[FV = V \text{diag} (s_1, \ldots, s_n) \]

for example, suppose \(F \) is \(2 \times 2 \):

\[V = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \quad \text{diag} (s_1, s_2) = \begin{bmatrix} s_1 & 0 \\ 0 & s_2 \end{bmatrix} \]

← eigenvalues + eigenvectors

\[F V = \begin{bmatrix} Fv_1 & Fv_2 \end{bmatrix} \quad V \text{diag} (s_1, s_2) = \begin{bmatrix} v_1 s_1 & v_2 s_2 \end{bmatrix} \]

\[L \text{ columns of } V \text{ (both are } 2 \times 1) \]
if the eigenvalues s_1, \ldots, s_n of F are all distinct and we define a matrix

$$V = [v_1, \ldots, v_n]$$

with the corresponding eigenvectors in each column then

$$x(t) = e^{F t} x(0) = V e^{\text{diag}(s_1, \ldots, s_n) t} V^{-1} x(0)$$

$$= V e^{\begin{pmatrix} s_1 t & \cdots & s_n t \\ \vdots & \ddots & \vdots \\ 0 & \cdots & s_n t \end{pmatrix}} V^{-1} x(0)$$

what if $s = a + j b$???

$$e^{(a+jb)t} = e^{at} e^{jbt}$$

$$= e^{at} (\cos (bt) + j \sin (bt))$$
The system

\[\dot{x} = Fx \]

is asymptotically stable if and only if all of \(F \) have

\[x(t) \to 0 \quad \text{as} \quad t \to \infty \]
ACTIVITY - WISH LIST