Day 8

AE353
Spring zozz
Bretl

LASt time
$\dot{x}=A x+B u \quad \leftarrow$ model of all dynamics we care about
$u=-K x \quad \leftarrow$ model of all controllers we core about
\downarrow
$\dot{x}=(A-B K) x \leftarrow$ closed-loop system

Activity - practice derivation
$\frac{\dot{x}=F x}{\eta} \leftarrow$ for which F does $x(t) \rightarrow 0$ as $+\rightarrow \infty$???
$F=(A-B K)$

STRATEGY
(1) Answer this question in the special case when F is diagonal
(2) Show how to rewrite (almost) any F as diagonal
(3) Answer this question for (almost) any F

NOT DIAGONAL
suppose F is diagonal \mathcal{L}

$$
F=\left[\begin{array}{ll}
s_{1} & 0 \\
0 & s_{2}
\end{array}\right]
$$

$$
\begin{aligned}
& \dot{x}=F x \\
& x(t)=e^{F t} x(0)
\end{aligned}
$$

$$
\left[\begin{array}{cc}
0 & s_{2} \\
s_{1} & 0 \\
\frac{1}{2}(F F) t^{2}
\end{array}\right.
$$

then:
matrix
exponential
\% coordinate invariance

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}=F x \\
\downarrow \text { plug in } x=V z \text { for some invertible }
\end{array}\right.} \\
& V_{\dot{z}}=F V_{z} \\
& \downarrow \text { solve for } \dot{z} \\
& \dot{z}=V^{-1} F V_{z} \\
& \sqrt{3} \downarrow \text { solve for } z(t) \text { with matrix exponential } \\
& z(t)=e^{\left(V^{-1} F V\right) t} z(0) \\
& \downarrow \text { plug in } z=V^{-1} x \text { and solve for } x \\
& V^{-1} x(t)=e^{\left(V^{-1} F v\right)+V^{-1} x(0)} \\
& X(t)=V e^{\left(V^{-1} F V\right) t} V^{-1} x(0) \\
& e^{F t}=V e^{\left(V^{-1} F V\right) t} V^{-1}
\end{aligned}
$$

who cares?

$$
e^{F t}=\underbrace{\text { so let's choose } V^{e^{\left(V^{-1} F V\right) t} V^{-1}}}_{\text {this is easy to find if } V^{-1} F V \text { is diagonal }}
$$

our goal - find invertible V such that
$V^{-1} F V=\operatorname{diag}\left(s_{1}, \ldots, s_{n}\right) \leftarrow$ this is the same as for example, suppose F is 2×2 :

$$
F V=V \operatorname{diag}\left(s_{1}, \ldots, s_{n}\right)
$$

$$
V=\frac{\begin{array}{cc}
{\left[\begin{array}{cc}
V_{1} & v_{2} \\
s
\end{array}\right]} \\
L \text { columns of } V(\text { both are } 2 \times 1)
\end{array} \operatorname{diag}\left(s_{1}, s_{2}\right)=\left[\begin{array}{ll}
5 & 0 \\
0 & \delta_{2}
\end{array}\right]}{}
$$

then: $F v_{1}=v_{1} s_{1} \quad F v_{2}=v_{2} s_{2} \leftarrow$ eigenvalues + eigenvectors
$F V=F V_{1} F V_{2}$

$$
\left.V \operatorname{diag}\left(s_{1}, s_{2}\right)=v_{1} s_{1} v_{2} s_{2}\right]
$$

if
the eigenvalues s_{1}, \ldots, s_{n} of F are all distinct and we define a matrix

$$
V=\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]
$$

with the corresponding eigenvectors in each column then

$$
\begin{aligned}
&\left.x(t)=e^{F t} x(0)\right)=V \underbrace{V e^{\operatorname{diag}\left(s_{1}, \ldots, s_{n}\right)}+V^{-1} \times(0)} \\
& \operatorname{diag}(\underbrace{e^{\prime}, \ldots+j b ? ? ?}_{\text {what if } \left., \ldots, e^{s_{n} t}\right)} \\
& e^{(a+j b) t}= e^{a t} e^{j b t} \\
&= e^{a t}(\cos (b t)+j \sin (b t)
\end{aligned}
$$

The system

$$
\dot{x}=F x
$$

is asymptotically stable if and only if all of F have

ACTIVITY - WISH LIST

